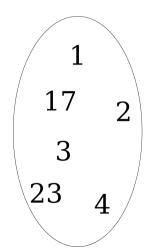
Relational databases: usage principles

Mathematical Preliminaries, Relational Model

Hiba ALQASIR 2021-2022

Preliminaries

A set is an unordered list of instances without multiple duplicates allowed.



Preliminaries

In the relational model, the only accepted structure to represent data is the **relation**.

Between two sets

Given the sets A, B

A relation \mathcal{R} on A, B can be defined as:

$$\mathcal{R} \subset A \times B$$

 ${\cal R}$ is a subset of the Cartesian product $A\times B$

Among three sets

Given the sets A, B, C

A relation \mathcal{R} on A, B, C can be defined as:

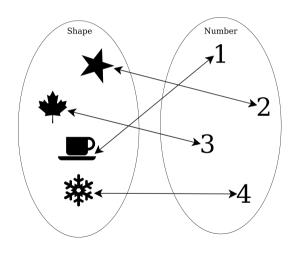
$$\mathcal{R} \subset A \times B \times C$$

 ${\cal R}$ is a subset of the Cartesian product $A\times B\times C$

Definition

A relation of degree n on the domains D_1, D_2, \ldots, D_n is a *finite* subset of the Cartesian product $D_1 \times D_2 \times \cdots \times D_n$

Representation / Graph



Representation / Table

Shape	Number
	1
*	2
*	3
辮	4

Tuples

- An element of a relation of dimension n is a tuple (a_1, a_2, \ldots, a_n) .
- In the table representation, a tuple is a row, also referred to as a record.
- A tuple is a single entry in the table having the attributes.

Tuples

The definition of a relation as a set has some important implications:

- The order of the tuples is indifferent because there is no order in a set.
- The same tuple cannot be found twice because there are no duplicates in a set.
- There is no 'empty cell' in the relation (theoretically).

Schema

We can describe a relation by:

- 1. The name of the relation.
- 2. A (distinct) name for each dimension, called attribute name, noted A_i .
- 3. The domain (type) of the value of each dimension, noted D_i .

Schema: $\mathcal{R}(A_1 : D_1, A_2 : D_2, \dots, A_n : D_n)$

Concepts and vocabulary

	Model term	Table representation term
\mathcal{R}	Relation	Table
T	Tuple	Row
Α	Attribute name	Column name
а	Attribute value	Cell
D	Domain	Туре

Keys

A key of a relation $\mathcal R$ is a minimal subset K of the attributes such that any attribute of $\mathcal R$ depends functionally on K.

$$\forall u, v \in R$$
, if $u.K = v.K$, then $u = v$

We can have several potential keys: **candidate keys**. We must choose only one key: **primary key**.

A **foreign key** is an attribute or group of attributes in one table that are primary keys in another table

Recap

- 1. A relation of degree n on the domains D_1, D_2, \ldots, D_n is a finite subset of the Cartesian product $D_1 \times D_2 \times \cdots \times D_n$.
- 2. The schema of a relation is written $\mathcal{R}(A_1:D_1,A_2:D_2,\ldots,A_n:D_n)$, where \mathcal{R} is the name of the relation and the A_i are the names of attributes.
- 3. An element of this relation is a tuple (a_1, a_2, \ldots, a_n) , where the a_i are the values of the attributes.

Example of a relation

Courses(courseld:string, name:string, semester:string)

courseld	name	semester
c11	Fighting sleep	autumn
c23	Combat bad mood	winter
c34	Seasonal sneezing	spring

Example of a relation

Students2020(studentId:string, name:string, promotion:string)

studentId	name	promotion
grumpy2020	Grumpy	2020
dopey2020	Dopey	2020
sneezy2020	Sneezy	2020
sleepy2020	Sleepy	2020
sleepy2019	Sleepy	2019

Students2019(studentld:string, name:string, promotion:string)

studentId	name	promotion
grumpy2019	Grumpy	2019
sneezy2019	Sneezy	2019
sleepy2019	Sleepy	2019

Operations on relations

A relation is a set of tuples.

We can apply the set operations and some unary and binary operations.

Unary operations

- Selection
- Projection
- Rename



Selection

 $\mathcal{R}_1 := \sigma_{\mathcal{C}}(\mathcal{R}_2),$

where C is a selection criteria:

- Comparison between an attribute of the relation, A, and a constant a.
- Comparison between two attributes A_1 and A_2

Selection returns all those tuples of \mathcal{R}_2 that satisfy C (extracts a subset of tuples).

Selection

courseld	name	semester
c11	Fighting sleep	autumn
c23	Combat bad mood	winter
c34	Seasonal sneezing	spring

Courses

$$\mathsf{SpringCourses} = \sigma_{\mathsf{semester} = \mathsf{spring}}(\mathit{Courses})$$

courseld	name	semester
c34	Seasonal sneezing	spring

SpringCourses

19 Database Hiba ALQASIR

Projection

$$\mathcal{R}_1 := \prod_{\mathcal{S}} (\mathcal{R}_2)$$

where S is a subset of the attributes in the relation \mathcal{R}_2 .

Projection returns all tuples with the given attributes only (extracts a subset of attributes).

Note: A projection returns the distinct tuples (after removing duplicates) only.

20 Database Hiba ALQASIR 202

Projection

courseld	name	semester
c11	Fighting sleep	autumn
c23	Combat bad mood	winter
c34	Seasonal sneezing	spring

Courses

$$\mathsf{CoursesNames} = \textstyle\prod_{\mathsf{courseId},\mathsf{name}}(\mathit{Courses})$$

courseld	name
c11	Fighting sleep
c23	Combat bad mood
c34	Seasonal sneezing

CoursesNames

Rename

$$\mathcal{R}_1 := \rho_N(\mathcal{R}_2),$$

where N is the new schema for the result relation \mathcal{R}_1 .

$$\mathcal{R}_1 = \rho_{\mathcal{R}_1(A_1, \dots, A_n)}(\mathcal{R}_2)$$

 \mathcal{R}_1 is a relation with attributes A_1, \ldots, A_n and the same tuples as \mathcal{R}_2 .

Rename

courseld	name	semester
c11	Fighting sleep	autumn
c23	Combat bad mood	winter
c34	Seasonal sneezing	spring

Courses

$$\mathsf{NewCourses} = \rho_{\mathsf{NewCourses}(\mathsf{id}, \ \mathsf{courseName}, \ \mathsf{semester})}(\mathit{Courses})$$

id	courseName	semester
c11	Fighting sleep	autumn
c23	Combat bad mood	winter
c34	Seasonal sneezing	spring

NewCourses

Binary operations

- Union
- Intersection
- Difference
- Cartesian product



Union

$$\mathcal{R} := \mathcal{R}_1 \cup \mathcal{R}_2$$

The union operation returns **tuples** that appear in one or both relations.

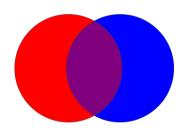
Number of tuples in the resulting relation: at most $T(\mathcal{R}_1) + T(\mathcal{R}_2)$ tuples.

Union operation is valid if and only if the attributes of \mathcal{R}_1 , \mathcal{R}_2 are the same, i.e. $A(\mathcal{R}_1) = A(\mathcal{R}_2)$.

Union

studentId	name	promotion
grumpy2020	Grumpy	2020
dopey2020	Dopey	2020
sneezy2020	Sneezy	2020
sleepy2020	Sleepy	2020
grumpy2019	Grumpy	2019
sneezy2019	Sneezy	2019
sleepy2019	Sleepy	2019

 $\mathsf{Students2019} \, \cup \, \mathsf{Students2020}$





Intersection

$$\mathcal{R} := \mathcal{R}_1 \cap \mathcal{R}_2$$

Intersection operation returns tuples that appear in both the relations.

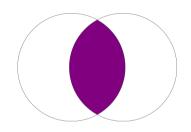
Number of tuples in the resulting relation: at most $min(T(\mathcal{R}_1), T(\mathcal{R}_2))$ tuples.

Intersection operation is valid if and only if the attributes of \mathcal{R}_1 , \mathcal{R}_2 are the same, i.e. $A(\mathcal{R}_1) = A(\mathcal{R}_2)$.

Intersection

studentId	name	promotion
sleepy2019	Sleepy	2019

Students2019 ∩ Students2020





Difference

$$\mathcal{R} := \mathcal{R}_1 - \mathcal{R}_2$$

Difference operation returns **tuples** that appear in one relation (first one) but not in the other (second one).

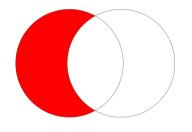
Number of tuples in the resulting relation: at most $T(\mathcal{R}_1)$ tuples.

Difference operation is valid if and only if the attributes of $\mathcal{R}_1, \mathcal{R}_2$ are the same, i.e. $A(\mathcal{R}_1) = A(\mathcal{R}_2)$.

Difference

studentId	name	promotion
grumpy2019	Grumpy	2019
sneezy2019	Sneezy	2019

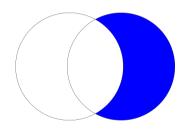
Students2019 - Students2020



Difference

studentId	name	promotion
grumpy2020	Grumpy	2020
dopey2020	Dopey	2020
sneezy2020	Sneezy	2020
sleepy2020	Sleepy	2020

Students2020 - Students2019



Cartesian product

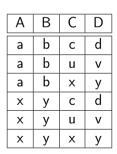
$$\mathcal{R} := \mathcal{R}_1 \times \mathcal{R}_2$$

Pair each tuple t_1 of \mathcal{R}_1 with each tuple t_2 of \mathcal{R}_2 .

Number of tuples in the resulting relation: $T(\mathcal{R}_1)*T(\mathcal{R}_2)$ tuples. Schema of \mathcal{R} is the attributes of \mathcal{R}_1 and then \mathcal{R}_2 , in order. But beware attribute A of the same name in \mathcal{R}_1 and \mathcal{R}_2 : use $\mathcal{R}_1.A$ and $\mathcal{R}_2.A$.

No validity constraint.

Cartesian product



$$\mathcal{R}_1 \times \mathcal{R}_2$$

 \mathcal{R}_2

Join operations

- Theta join
- Natural
- Inner
- Outer

Theta join

$$\mathcal{R} := \mathcal{R}_1 \bowtie_{\mathcal{C}} \mathcal{R}_2$$

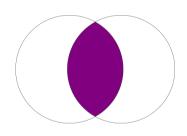
where C is a condition (as in 'if' statements) that refers to attributes of \mathcal{R}_2 .

- Take the product $\mathcal{R} := \mathcal{R}_1 \times \mathcal{R}_2$
- Then apply σ_C to \mathcal{R} .

Natural join

$$\mathcal{R}:=\mathcal{R}_1\bowtie\mathcal{R}_2$$

Cartesian product of two relations followed by the removal of duplicate attributes.



Natural join

Capital	State
Paris	France
Madrid	Spain
Berlin	Germany

Capitals

State	President	
France	Emmanuel Macron	
Germany	Frank-Walter Steinmeier	
Italy	Sergio Mattarella	

Presidents

Capital	State	President
Paris	France	Emmanuel Macron
Berlin	Germany	Frank-Walter Steinmeier

 $\mathsf{Capitals} \bowtie \mathsf{Presidents}$

The information about *Italy* and *Spain* are lost.

Outer Join

Outer join has been extended from the natural join operation for avoiding information loss.

Left Outer Join / Left Join

$$\mathcal{R} := \mathcal{R}_1 \bowtie \mathcal{R}_2$$

Left Join makes a natural join but adds extra tuples to the result padded with NULL values to deal with missing information in the first relation.

Left Outer Join / Left Join

Capital	State
Paris	France
Madrid	Spain
Berlin	Germany

Capitals

State	President	
France	Emmanuel Macron	
Germany	Frank-Walter Steinmeier	
Italy	Sergio Mattarella	

Presidents

Capital	State	President
Paris	France	Emmanuel Macron
Madrid	Spain	NULL
Berlin	Germany	Frank-Walter Steinmeier

 $\mathsf{Capitals} \bowtie \mathsf{Presidents}$

Right Outer Join / Right Join

$$\mathcal{R} := \mathcal{R}_1 \bowtie \mathcal{R}_2$$

Right Join makes a natural join but adds extra tuples to the result padded with NULL values to deal with missing information in the second relation.

Right Outer Join / Right Join

Capital	State
Paris	France
Madrid	Spain
Berlin	Germany

Capitals

State	President	
France	Emmanuel Macron	
Germany	Frank-Walter Steinmeier	
Italy	Sergio Mattarella	

Presidents

Capital	State	President
Paris	France	Emmanuel Macron
Berlin	Germany	Frank-Walter Steinmeier
NULL	Italy	Sergio Mattarella

Capitals ⋈ Presidents

Full Outer Join / Full Join

$$\mathcal{R} := \mathcal{R}_1 \bowtie \mathcal{R}_2$$

Full Join makes a natural join but adds extra tuples to the result padded with NULL values to deal with missing information in the first and in the second relations.

Full Outer Join / Full Join

Capital	State
Paris	France
Madrid	Spain
Berlin	Germany

 ${\sf Capitals}$

State	President	
France	Emmanuel Macron	
Germany	Frank-Walter Steinmeier	
Italy	Sergio Mattarella	

Presidents

Capital	State	President
Paris	France	Emmanuel Macron
Madrid	Spain	NULL
Berlin	Germany	Frank-Walter Steinmeier
NULL	Italy	Sergio Mattarella

Capitals \bowtie Presidents

Suppose there exists a pair of relations $\mathcal{R}_1(X,Y)$ and $\mathcal{R}_2(X,Y)$ having $t_1 > 0$ and $t_2 > 0$ tuples, respectively. Find out the minimum and maximum possible number of tuples that may appear in the resulting relations provided by the following operations.

- $\mathcal{R}_1 \cup \mathcal{R}_2$
- $\mathcal{R}_1 \cap \mathcal{R}_2$
- $\bullet \ \mathcal{R}_1 \mathcal{R}_2$
- $\mathcal{R}_1 \times \mathcal{R}_2$

Suppose there exists a pair of relations $\mathcal{R}_1(X, Y)$ and $\mathcal{R}_2(X, Y)$ having $t_1 > 0$ and $t_2 > 0$ tuples, respectively.

Expression	Minimum tuples	Maximum tuples
$\mathcal{R}_1 \cup \mathcal{R}_2$		
$\mathcal{R}_1\cap\mathcal{R}_2$		
$\mathcal{R}_1 - \mathcal{R}_2$		
$\mathcal{R}_1 imes\mathcal{R}_2$		

A database of a building management syndicate with the schema:

- Building (id, name, address)
- Apartment (id , no , surface , level , idBuilding)
- Person (id, first name, last name, profession, apartmentid)
- Owner (idPerson , idAppart, quotePart)

Exersice from: http://sql.bdpedia.fr/

id	name	address
1	Koudalou	3 rue des Martyrs
2	Barabas	2 allée du Grand Turc

${\sf Building}$

idPerson	idAppart	quotePart
1	100	33
5	100	67
1	101	100
5	102	100
1	202	100
5	201	100
2	103	100

Owner

id	no	surface	level	idBuilding
100	1	150	14	1
101	34	50	15	1
102	51	200	2	1
103	52	50	5	1
104	43	75	3	1
200	1	150	0	2
201	2	250	1	2
202	3	250	2	2

Apartment

id	first name	last name	profession	apartmentid
1		Prof	Enseignant	202
2	Alice	Grincheux	Cadre	103
3	Léonie	Atchoum	Stagiaire	100
4	Barnabé	Simplet	Acteur	102
5	Alphonsine	Joyeux	Rentier	201
6	Brandon	Timide	Rentier	104
7	Don-Jean	Dormeur	Musicien	200

Person

Express the following queries in relational algebra:

- Who are the owners of Atchoum's apartment?
- In which buildings does an actor live?
- Who lives in an apartment of less than 70 m^2 ?
- Who owns, at least partially, the apartment he occupies?
- In which buildings are there no musicians?
- Who owns an apartment without occupying it ?

RelaX – relational algebra calculator: https://dbis-uibk.github.io/relax

